
A Grid-Based Algorithm in Conjunction with a Gaussian-
Based Model of Atoms for Describing Molecular Geometry
Arghya Chakravorty [a] Emilio Gallicchio ,*[b] and Emil Alexov *[a]

A novel grid-based method is presented, which in conjunction
with a smooth Gaussian-based model of atoms, is used to com-
pute molecular volume (MV) and surface area (MSA). The MV
and MSA are essential for computing nonpolar component of
free energies. The objective of our grid-based approach is to
identify solute atom pairs that share overlapping volumes in
space. Once completed, this information is used to construct a
rooted tree using depth-first method to yield the final volume
and SA by using the formulations of the Gaussian model
described by Grant and Pickup (J. Phys Chem, 1995, 99, 3503).
The method is designed to function uninterruptedly with the
grid-based finite-difference method implemented in Delphi, a
popular and open-source package used for solving the

Poisson–Boltzmann equation (PBE). We demonstrate the time
efficacy of the method while also validating its performance in
terms of the effect of grid-resolution, positioning of the solute
within the grid-map and accuracy in identification of overlap-
ping atom pairs. We also explore and discuss different aspects
of the Gaussian model with key emphasis on its physical mean-
ingfulness. This development and its future release with the
Delphi package are intended to provide a physically meaning-
ful, fast, robust and comprehensive tool for MM/PBSA based
free energy calculations. © 2019 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.25786

Introduction

Molecular geometry, best described by using the molecular vol-
ume (MV) or surface area (MSA) or both of a molecule, has
served as a fundamental factor in modeling the nonpolar prop-
erties of biological macromolecules. The prominent role of non-
polar interactions in processes like the formation of protein
aggregates in solvent, protein–drug binding, and membrane
formation is well documented.[1–3] Furthermore, binding free
energy changes occurring due to mutations in proteins also
conceive the important role played by the change in the sur-
face area (SA) of the mutant sites in predicting the pathogenicity
of the mutation.[4,5] Besides binding, studies on folding and
unfolding of proteins have signified the role of MV and MSA.[6]

From a geometrical perspective, these quantities help differenti-
ate the level of packing of native from nonnative and unfolded
states of proteins. From a thermodynamic perspective, changes
in volume and SA signify the effect of pressure on protein fold-
ing in isothermal conditions, which is essentially the condition
inside a biological cell. In addition, pressure-induced unfolding or
denaturation and the associated volume changes of a protein
have also been shown to have a significant dependence on the
volumes of the internal cavities in its native structure.[7,8]

To computationally determine the free energy of various
macromolecular processes, the free energy is typically divided
into its enthalpy part and its entropy part and the enthalpy part
is further split into an intermolecular gas phase mechanical
energy term, a polar energy term and a nonpolar energy term.
Within the framework of implicit solvent models, the polar and
the nonpolar components are computed using various models
that are based on rational approximations of the underlying
physics. These methods are widely popular and are integral

parts of protocols, such as MM/PBSA[9] and MM/GBSA.[10] The
standard protocol is based on post-processing the configura-
tions sampled by a molecular dynamics (MD) or Monte Carlo
(MC) simulation in explicit water wherein the energy of individual
configurations is computed and used to deliver the average free
energy. For each configuration, the vacuum phase molecular-
mechanical (MM) energy is computed using the force-field Ham-
iltonian and the associated atomic parameters. The polar compo-
nent, which can be thought of as the work done to “turn on” the
interactions of the solute charges with the solvent in a multidi-
electric media, is computed either via the Poisson–Boltzmann
(PB) approach by using one of the several PB-solvers like
Delphi,[11] AMBER/PBSA,[12] MIBPB,[13] APBS,[14] ZAP,[15] ITPACT[16]

or the generalized born (GB) approach by using the models of -
Onufriev–Bashford–Case,[17] Still,[18] Hawkins-Cramer-Truhlar[19]

and many others. Finally, the nonpolar component, which can
be thought of as the energy required to create a cavity in the
bulk of the solvent large enough to accommodate the solute in
question, can also be computed using various models, at the
core of which lies the assumption that the nonpolar energy is
related to the solute’s volume or SA or both.

However, the use of different models and their inclusion in
the protocol for computing free energy can largely depend on
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one’s understanding of the underlying physics and one’s expec-
tations from these computations. As far as the nonpolar compo-
nent of the free energies is concerned, which is also the main
focus of this work, there are several different models that use
MV and MSA to best rationalize their understanding for the
underlying physical processes. Some empirical models assume
a linear relationship between the nonpolar energy and the
MSA[20–26] while others also include the MV.[27–33] By identifying
some limitations of these linear models in describing the physi-
cal reality,[34–36] recent models have suggested that in addition
to the linear cavity term, an attractive van der Waals (vdW)
term[28,29,31,32,37–40] is also required to determine the total non-
polar contribution to the free energy. Key variations among
these different models originate from their definition of protein
volume and SA. Most models use the solvent-accessible surface
area (SASA)[23,34,41–44] of the proteins to quantify the size of the
cavity while some also justify the use of van der Waals surface
area (vdWSA).[37–39,45] As for the volume, some use van der
Waals volume (vdWV),[37,39] others the solvent-accessible vol-
ume (SAV).[31,33] In addition, these models may also differ in the
method they use to represent individual solute atoms, for
example, as classical hard-spheres that draws a strict boundary
between the solvent and solute regions or as regions occupied
by a smooth volume density (expressed as Gaussians) which
promotes a strict-surface-free approach[46,47] of describing sol-
vated systems.

This variety in nonpolar energy models has called for differ-
ent computational methods of computing volumes and
SA. Besides differing on the model of atoms, these computa-
tional methods can also be distinguished in terms of the algo-
rithm they use for identifying atomic overlaps[48–50] or that for
delineating surfaces of contact of the probe and the solute
atoms.[51–55] The use of one model over the other is certainly
influenced by the time-efficacy and robustness besides the all-
important physical meaningfulness. But as the number of struc-
tures in the protein data bank (PDB) grows and genomic expan-
sion studies are being undertaken widely, researchers are using
a large number of structures in their studies and are sampling
larger configurational spaces for a better and holistic under-
standing of biomolecular processes. As a result, the time-
efficacy of a computational method has become a significant
factor in influencing its choice over others.

The design of such a fast and accurate method is the main
goal of this work. The method we present here combines a
novel grid-based approach of identifying overlapping atoms
and the analytical approach of computing MVs and SA using
a Gaussian-based description of atoms.[49] The primary moti-
vation is to integrate a method of computing MV and MSA,
and therefore, a method of computing nonpolar energy
terms, into the popular PB-solver Delphi.[11] The use of a
smooth Gaussian-based model will make this merger consis-
tent with its smooth Gaussian-based approach of represent-
ing the dielectric distribution of solvated biomolecular
systems.[15,47] This integration is expected to provide a com-
prehensive platform for computing the free energy using a
single package and thereby, offer a wide range of users a
convenient way of analyzing and evaluating the energy of

system configurations sampled from large-scale simulations
using the MM/PBSA protocol.

The novel grid-based algorithm is designed to identify
pairs of solute atoms that overlap in space by simultaneously
using the robust grid-based finite-difference method that
Delphi uses to solve the Poisson–Boltzmann equation (PBE).
By doing so, we show that little to no additional time is spent
in identifying overlapping atom pairs. After the pairs have
been identified, a depth-first tree-based algorithm, used by
the popular AGBNP[37] package, is used to compute the vol-
umes and SAs.

The layout of this paper is as follows. First, the design of the
grid-based search for overlapping atom pairs and its imple-
mentation in Delphi is demonstrated. Then the method is vali-
dated and benchmarked. Thereafter, we present a comparison
of the Gaussian-based approach with respect to the standard
hard-sphere model to highlight its numerical accuracy and
physical appeal; the latter being shown in terms of the profile
of volume and SA changes as a function of separation of the
monomer units of Barnase–Barstar complex. We also present
some aspects of the Gaussian model that have not been
emphasized previously while reviewing and discussing some
of the properties that are well known. We also review a previ-
ously reported modification to the Gaussian model, discuss its
physical implications and highlight limitations to its
applicability.

Theory and Implementation

The Gaussian model of computing MV and MSA

The Gaussian model prescribed by Grant and Pickup[49] is pre-
sented here. We have adopted some new conventions and
symbolisms to describe the model which shall be clarified as
we explain it.

An atom “i” with vdW radius Ri and coordinate ri
!
is described

in a Gaussian representation via a density function given by.

gi = pie
−αi r

!
− r

!
ið Þ ð1Þ

with argument αi of Gaussian exponent function expressed as

αi =
κ

R2i
ð2Þ

Here κ is a dimensionless parameter (see below), and height
factor

pi =
4π
3

κ

π

� �3
2 ð3Þ

such that the volume, obtained from the volume integral of this
density function, equals the hard-sphere volume (Vi = 4

3πR
3
i Þ of

the atom
The product, gij = gigj, of the Gaussian density functions

for atoms i and j which describes the volume of overlap
between the two, is itself a Gaussian density function cen-
tered at
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rij
! =

αi ri
!
+ αj rj

!

αij
ð4Þ

and Gaussian exponent

αij = αi + αj

Correspondingly, in the Gaussian formalism the overlap vol-
ume, Vij, of two atoms is given by the volume integral of their
product density.

Vij =
ð
V
dVgij = pije

−
Λij
αij

� �
π

αij

� �3
2

ð5Þ

where

pij = pipj

and

Λij = αiαj ri
!
− rj

!j2�� ð6Þ

This strategy can be extended recursively to obtain analytic
expressions of the Gaussian overlap volumes of any order. For
instance, the third order overlap volume of atoms i, j, and t is
expressed as

Vijt =
ð
V
dV gijt = pijte

−

P
m,n= i, j, tf gjm 6¼n

Λmn

αijt

� �
π

αijt

� �3
2

ð7Þ

where

pijt = pijpt

αijt = αij + αt

and

rijt
! =

αij rij
! + αt rt

!
αijt

ð8Þ

To compute the MV, overlap volumes are added to or sub-
tracted from the arithmetic sum of the hard-sphere volumes of
all the atoms, based on their order (inclusion–exclusion for-
mula). The alternative inclusion and exclusion ensure that there
is no redundancy in the contribution by a certain overlap
region to the total volume.

Vmolecule =
X
i

4
3
πR3i −

X
i < j

Voverlap
ij −

X
i < j < t

Voverlap
ijt

 

+
X

i < j < t < s

Voverlap
ijts +…

�
ð9Þ

The terms in the parenthesis in the right-hand side comprise
the total overlap volume. Note that they occur with alternating
signs of the form (−1)n where n is the order of the overlap.

The surface area SAi of atom “i”, is defined as the derivative
of the MV with respect to the radius of that atom. The total SA
of the molecule is obtained from eq. (9) as the sum of the indi-
vidual atomic SAs as

SAmolecule =
X
i

SAi =
X
i

∂Vi
∂Ri

−
X
j

∂Vij
∂Ri

+
X
j, t

∂Vijt
∂Ri

−
X
j, t,s

∂Vijts
∂Ri

+ � � �
 !

ð10Þ

In the context of the Gaussian model, overlap volumes and
their derivatives are available in analytic form. For a generic
overlap term of order n, the derivative with respect to the
radius of atom i is given by:

∂Vij…n

∂Ri
=
∂Vij…n

∂αi

∂αi
∂Ri

� �
=
2κi
R3i

3
2αij…n

+ ri
!
− rij…n
��!�� ��2� 	

Vij…n ð11Þ

A grid-based method of identifying overlapping atom pairs:
algorithm

The above mathematical description of the model emphasizes
on the importance of the overlapping volume and SA terms to
these calculations. These terms are contributed by atoms that
share a region, which means that each atom has its own set of
neighboring atoms that affect its volume/SA. Typically, such
pairs of atoms are found using a distance criterion, wherein
two atoms, i and j, are said to be overlapping if:

ri
!
− rj

!j≤ Ri + Rj + ϵ
�� ð12Þ

where R represents their respective radius and r
!
designates

their center coordinates, such as those provided in a PDB file. ϵ,
typically, has a small value that provides allowance for those
pairs of atoms which would not overlap were they to be
described as classical hard-spheres. Finding out this pair-list,
also known as neighbors list, therefore, requires O(N2) opera-
tions, in theory. Algorithms like cell-linked list,[56] domain-
decomposition method,[57] Verlet list[58] and others[59–61] were
contrived solely to cut down on the computation time and are
mainly incorporated with MD simulation packages.

In our approach, we make use of the network of grids con-
structed by Delphi in order to solve the PBE using finite differ-
ence method.[11,62] The neighbor list of the atoms is computed
in this symmetrical 3D mesh of grids (also called box) on which
the molecule in question is projected into. The box is large
enough to accommodate the molecule fully and have an addi-
tional space around it to account for the solvent phase. Based
on the number of grids per Å (a.k.a resolution or “scale”), the
finesse of the 3D mesh can be manipulated. At its core, these
grid points serve as points in space where the electrostatic
potential and other quantities like electrolyte concentration are
determined.

The first step of Delphi’s algorithm is to determine the dielec-
tric distribution of the system contained in the box. With the
information of the coordinate of the atoms and their radii, grid
points are surveyed and based on its distance from the center,
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a dielectric value is assigned. As evaluating all the grid points
can be extremely expensive, only a cubic region around the
atom in question, large enough to accommodate its spherical
volume is scanned.[11] Consecutive atoms are projected onto to
the grid points and a 3D dielectric distribution map is con-
structed. It is at this step that the neighbor list of atoms is gen-
erated. As consecutive atoms are placed onto the grid,
computation of neighbor list runs in parallel which uses the fol-
lowing criteria to identify neighbors: two atoms are considered
as neighbors if the local cubic box around them share at least
one grid point. If the boxes are larger, more neighbors will be
identified and vice versa. However, overestimation of the num-
ber of neighbors will not necessarily overestimate the volume.
It will simply increase the computation time.

At this point, we would like to alert the readers that though
the Gaussian model describes atoms as densities, our grid-
based approach treats them as spheres of a radius larger than
its input radius. This representation is purely limited to the
steps used for computing atom neighbor lists for reasons that
are explained below. Once the neighbor list is created, the cal-
culations of volume and surface are undertaken using a Gauss-
ian density-based representation of the atoms.

To provide the exact schematic of our method and its work-
flow, we use an example molecule of five atoms. Without any

loss of generality, the grids will be portrayed in 2D and the
atoms will be described as circles of radius equal to their vdW
radius. This is illustrated in Figure 1. In the figure, the flow of
steps is represented by a number on each of the panel, going
from “1” through “6”.

Step 1. A mesh, large enough to encompass all the atoms of
the input molecule, is defined. A labeling system is used
wherein each grid point is labeled by an integer. To initialize
our grid, we assign “0” to each grid point.
Step 2. A separate (N + 1) × (N + 1) square matrix, depicting
atom pairs that overlap in space is defined. We will refer to the
matrix as the atom-overlap matrix or AOM. All the atoms in the
molecule with indices 1, 2, … , N are considered along with a
dummy atom of index 0. An element of this matrix is defined as
AOMm,n 2 [True, False] 8m, n 2 [0, 1, 2, … , N] such that if atoms
m and n overlap in space, AOMm, n = True otherwise False.
Step 3. The first atom (with index “1”) in the list is placed onto
the grid. As the grid-points in the vicinity of atom 1, contained
in its local cubic box (shown as squares in the figure), are sur-
veyed by Delphi, grid points that lie within a distance of kR1
from the center of atom 1 (r1

!
), that is, those that satisfy the dis-

tance criterion r
!
grid− r1

!j≤ kR1; k 2Z+
�� , are made to undergo a

Figure 1. a) An illustration of the grid-based algorithm
designed for identifying atom pairs that overlap in
space. Each atom is shown as a colored circle
surrounded by a square of the same color depicting
the local box that is searched for grid-points in its
vicinity. The systematic flow of the steps is indicated
by the label on the top-right corner of each panel in
the figure. Two atoms “i” and “j” that overlap update
the atom overlap matrix (AOM) element AOMi, j to True.
At each step, new indices of AOM that get updated to
True are shown in red. The numeric labels placed at
different regions are meant to indicate the integer
label on the grid-points present in a region. b) A
rooted tree constructed using the neighbor list of all
the atoms in the molecule and an additional dummy
atom with index “0”. Each level or order is marked
using gray horizontal bars. From top to bottom, levels
of increasing orders are shown. [Color figure can be
viewed at wileyonlinelibrary.com]
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change in their integer label. “k” here is a factor that affects the
volume of the box that is searched for grid points that fit the cri-
teria. From the initial “0” label, they are assigned a label of “1” as
they lie in the vicinity of atom 1. This change in label of the grids
is accompanied by updating AOM0,1 = True. Essentially, the
matrix element with row-index equal to the old label and
column-index equal to the new label is updated to True.
Step 4. The second atom (with index 2) is placed onto the grid.
Grid points that satisfy the above distance criterion with respect
to atom 2, are surveyed and their labels are updated accordingly.
Those with “0” are now labeled as “2”, causing AOM0,2 = True and
those with “1” are now labeled as “2”, causing AOM1, 2 = True.
That AOM1,2 = True exists implies that atoms 1 and 2 potentially
overlap.
Step 5. The third atom (index 3) is placed onto the grid. At this
point, grid points are labeled as either ‘0’ or ‘1’ or ‘2’. Grid
points satisfying the distance criteria with respect to atom-3
result into updating AOM0,3, AOM1,3 and AOM2,3 to True.
Step 6. Similarly, atom 4 and 5 are treated and the correspond-
ing elements in the AOM are updated.

It must be noted here that as atoms are used in an increasing
order of their index, the above procedure will only update the upper
triangular block of the AOM. This does not result in losing any infor-
mation because if atoms “m” and “n” overlap (where m < n) due to
AOMm, n = True, then it directly implies that AOMn,m = True.
The final AOM is used to prepare the neighbor list. The fol-

lowing steps are performed.

Step 1. For each atom, an empty neighbor list (to store integers
or atom-indices) is defined.
Step 2. An iterator navigates through the upper triangular part of
the symmetric AOM and checks for all the elements AOMm,n jm ≤ n
which are True.
Step 3. For any AOMm,n = True, index n is appended to the
neighbor list of atom m.

For our example molecule with five atoms, Table 1 shows the
AOM (in the upper-triangular form) and the list of neighbors for
each atom. The outcome can be confirmed by the arrangement
of atoms in Figure 1a. Also note that, atom with index “0” is a
dummy atom and it automatically has all the “real” atoms of
the molecule in its neighbors list. This helps in the construction
of a rooted tree that is used for computing overlap volumes
and SA.

A depth-first traversal algorithm for computing total volume
and SA

The neighbor lists of the atoms are used to construct a rooted
tree of overlaps, the hierarchy of which follows the order n of
the overlaps. Each node of the tree holds the value of the over-
lap volume which is arithmetically added, according to eq. (9),
to yield the total MV. For computational efficiency, overlap vol-
ume terms with values less than 0.001 A3 are neglected. A vol-
ume cutoff of this kind is necessary as the Gaussian overlap
volume of two distant atoms, albeit infinitesimally small, will
never be zero. In parallel to volume calculations, the SA term
for each node is also computed and the total molecular SA is
obtained.

The basic premise of constructing a tree by a “depth-first”
algorithm and using it for volume/SA computation is identical
to the one used in reference 39. Each atom is assigned an inte-
ger index (starting from 1) and a dummy atom with index “0” is
used to build a rooted tree with it being the designated root.
Each subsequent level in the tree is assigned an order based on
its distance from the root; the root is assigned an order 0 at the
first step of the process. All the atoms are then defined as
the children of the root, hence, forming the next level down
the hierarchy with order 1. Each of these atoms then initiate a
separate branch of the tree. The tree grows more levels by
incorporating new nodes of the next order that contains the
information of all the common neighbors of its ancestors. Even-
tually, a node of any order is designed to contain the informa-
tion of all the neighbors common between itself and its
ancestors. Computationally, a node of order “k” is represented
by an ordered list of ‘k’ atom indices such that the atom with
the kth index is a common neighbor to of all the “k−1” atoms
preceding it. Geometrically, that implies that all the k-atoms
overlap in space. For example, if a node (1, 2, 3, 7) exists for an
arbitrary molecule, it would imply that atom-7 is a common
neighbor of atoms-1, 2, and 3. It would also mean that the four
atoms overlap in space. A branch of the tree is terminated
when a new common neighbor is not found or when the vol-
ume of that particular node is smaller than the cutoff value
(0.001 Å3, see above). For computational efficiency, we limited
the order of nodes to 6. As the branch reaches a “dead-end”,
the next branch from the top of the tree is worked upon in the
same recursive manner till all the branches growing out of the
root have been covered. For our example case of the five-atom
molecule, Figure 1b is an illustration of its depth-first tree.

It must be noted that, though the Gaussian-model projects a
physically meaningful picture of a protein-solvent system, the
mathematical formulation can harbor some unphysical issues.

Table 1. The atom overlap matrix or AOM (top panel) and the neighbor
list of atoms inferred from it (bottom panel) for the five-atom example
molecule obtained using the grid-based neighbor search algorithm. For
clarity, only the upper triangular part of the symmetric matrix is shown.

Atom overlap matrix (AOM)

0 1 2 3 4 5
0 – T T T T T
1 – T T – T
2 – T T T
3 – – –
4 – T
5 –

Neighbor list of the atoms

Atom index List of neighboring atoms

0 (Dummy Atom) [1, 2, 3, 4, 5]
1 [2, 3, 5]
2 [3, 4, 5]
3 []
4 [5]
5 []

“True” is represented as “T” and “False” is represented as “–”.
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Therefore, it is necessary that they are eliminated correctly. An
example is negative SAs for deeply buried atoms surrounded
by many neighboring atoms.[39] For such atoms, it is likely that
certain orders of the overlap volume, which have a negative
contribution to its total SA, add up to be larger than its individ-
ual volume (e.g., order 2). To correct for this, we devised a phys-
ically appealing way of filtering the contribution of these atoms
to the total SA. This filter uses a smooth sigmoid function of
the form:

SAfiltered, i = SAi
1

1+ eg −SAi + SAcutoff, ið Þ
� �

ð13Þ

where ‘i’ depicts an atom and SAi is the surface area computed
by the Gaussian model. ‘g’ is a dimensionless constant with a
value 5, assigned after optimization. SAcutoff,i is a threshold
value of the SA which decides if an atom contributes to the
total SASA of the molecule. Only the atoms with values larger
than the cutoff contribute. The cutoff is computed using a
hard-sphere approximation and hence depends on the radius
of a solvent-probe (Rprobe; 1.4 Å for water) and the radius of
that atom (Ri). An atom is considered solvent accessible if it can
allow at least one solvent molecule (in its hard sphere form) to
share a tangential plane with it. The cutoff, therefore, acquires
the following form:

SAcutoff, i = SAi
1− cos θð Þ

2

� 	
ð14Þ

where the angle “θ” is the solid angle subtended by a cone of
height Rprobe + Ri and base radius Rprobe. It can be expressed as:

θ = 2tan−1 Rprobe
Rprobe + Ri

� �
ð15Þ

Figure 2 provides a visual reference which exemplifies the
case of a solvent of probe radius 1.4 Å and an atom of
radius 2 Å.

Validation

We validated our grid-based approach at three different levels.
First, the volumes and SAs for a library of 74 proteins of sizes
ranging from 50 to 200 residues (used in a previous work[63])
were calculated using algorithm as well as AGBNP[37,39] and
then were compared to determine the numerical differences.
Second, the effect of grid-resolution on the output of volume
and SA was examined. Third, the accuracy in identifying “cor-
rect” neighbors using the grid-based approach was evaluated
by comparing the neighbors identified using a standard O(N2)
analytical approach (see eq. (12)).

Figures 3a and 3b show the comparison of the volumes and
SA of 74 proteins computed using our implementation of the
Gaussian model and that of AGBNP. The quality can be adjudi-
cated by the slope and intercept of a linear regression fit as
well as the correlation (R2) accompanying the figures. Slopes
approximately equal to 1.00 (with relatively infinitesimal inter-
cepts) and correlations equal to 1.00 indicate that our imple-
mentation is precise. In addition, we also acknowledge that the
resolution of grids a.k.a “scale” in Delphi can have an effect on
the volume/SA value by having an effect on the neighbor
search process. Therefore, different values of scale were also
used and the resulting volume outputs were compared with
AGBNP. The results are shown in Figure 3c in terms of the root
mean square relative difference (RMSRD; see Appendix A)
incurred as a function of the grid resolution, which indicates
that the differences are small, that is, ~0.40% at a low resolution
of 1 grid/Å and ~0.15% at 2 grids/Å and become infinitesimal
(<0.1%) at 3 and 4 grids/Å. But as increased resolutions mean
nonlinear increase in computational times (cubic power), one
should consider a balance between accuracy and computa-
tional time.

For the second level of validation, we examined the effect of
differently positioning the solute inside the box without chang-
ing the position of the grids. This was important because in the
initial phase of a Delphi run, the coordinates of a 3D structure
(from PDB for instance) are projected onto these grids using a
distance-dependent interpolation technique. For this test, we
chose Barstar (PDB ID: 1X1X, chain D) and changed its position
continually along an arbitrarily chosen direction (without loss of
generality), by offsetting it’s coordinates from the center of the
box in small incremental steps and computing the volume and
SA using the Gaussian model. Figures 3d and 3e show the out-
comes as a function of the offset distance for different values
of scale. A tendency to vary periodically with regards to the off-
set is seen in these plots. The periodicity also varies with grid
resolution, in that, the period is inversely proportional to the
number of grids/Å. This is because with different offsets, the
projection of the atom coordinates on the grids changes and
this affects the neighbors identified in the process and congru-
ent grid placements occur in multiples of the grid resolution.
Eventually, that results into variations in the volume and SA
outputs. But these variations are minor in comparison to the
average values (<0.05%). This leads us to conclude that the
grid-based approach is appreciably precise and is only minutely
sensitive to the arrangement of the grid points in the box.

Figure 2. (Left) Illustration of the physical basis of the function used to
compute cutoff atom-specific surface area and filter out the contribution of
atoms with negative surface area terms. (Right) The output yielded by the
filtering function. [Color figure can be viewed at wileyonlinelibrary.com]
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At the third level of validation, we evaluated our method’s
accuracy in determining the “correct” neighbors. In a standard
approach, neighbor list for the atoms can be computed using a
distance-based criterion where two atoms with coordinates
separated by a distance lower than the sum of their radii are
considered as neighbors (eq. (12)). But in our grid-based
approach, two atoms are considered as neighbors if their box

of grids surrounding the respective spherical volumes shares
common grid-points (see Algorithm). Therefore, we compared
the neighbor list yielded by the grid-based approach, at differ-
ent grid resolutions, with that obtained by using the standard
O(N2) approach. This test was expected to report neighbors that
are common to both the approaches (True Positives) or are
neighbors based on one approach and not the other (False

Figure 3. Validation of the grid-based algorithm for identifying atom pairs that overlap in space. Comparison of (a) the molecular volumes and (b) the
molecular surface areas of 74 proteins obtained using the grid-based algorithm in conjunction with the Gaussian-model and obtained using AGBNP.
(c) Percent relative difference (RMSRD) of the molecular volumes of the 74 proteins with respect to the values output by AGBNP as a function of the scale or
grid-resolution. (d) Volume and (e) surface area of Barstar (PDB: 1X1X, chain D) plotted as a function of the offset in its position from the center of the grid
box. (f) Percentage of falsely missed atom pairs overlapping in space (False Negatives) by the grid-based algorithm plotted as a function of the grid-resolution
(grids/Å). [Color figure can be viewed at wileyonlinelibrary.com]
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Negatives or False Positives). Our grid-based approach would
ideally “pass” the test if it can identify at the very least all the
neighbors that the standard approach would. Any additional
neighbors detected (False Positives) would later be filtered out
based on the volume of their shared region (i.e., <0.001 Å3).
However, if a vast percentage of neighbors is only found by
the standard approach and not by the grid-based approach
(False Negatives), it would question the method’s credibility.
Our focus is to detect the percentage of such cases. Figure 3f
shows the outcomes. As a function of the grid resolution, the
percentage of False Negative cases is plotted. Each boxplot
depicts the range of percentage of False Negatives found
across a library of 74 proteins and the solid black line close to
the center of these boxplots is the median value of the distri-
bution (see Appendix B). There are two major observations: 1)
The percentage of the False Negative cases are infinitesimally
small (<0.4%) if not exactly 0.0 at a very coarse resolution of
0.5 grids/Å. 2) With finer resolutions, the percentage drops to
~0.05%. This means that the grid-based approach could likely
miss 1 in every 2000 neighbors identified using the standard
approach. This imparts an added confidence in the accuracy
of our approach.

Performance

We also assessed the time efficiency and complexity of the
grid-based approach. Theoretically, it is an O(8NR3G3) complex
algorithm, where “N” is the number of atoms and “R” is the
average atomic radius and “G” is the number of grids/Å. This is
because for each atom out of N, a local cubical volume around
its center is surveyed for the grid points which are later used
by Delphi for assigning dielectric values and distributing
charges. This local cube is of length proportional to 2R (average
atomic diameter), making its volume 8R3 and the total number
of grid points to be scanned equal to 8R3G3.

But the integration of the grid-based algorithm in parallel
with other grid-based operations performed by Delphi makes it
difficult to evaluate the exact time. Therefore, we measured the
total time taken by the grid-based neighbor search algorithm
and the volume/SA computation using our implementation of
the Gaussian model and subtracted it from the time taken by
Delphi when these calculations were turned off. This gives an
estimate of the average time efficiency as a function of grid res-
olution and size of the solute.

Figure 4 plots the average time over 10 runs versus the num-
ber of atoms for different grid resolutions. It is clear that time
taken for volume/SA computation along with the neighbor
search part is typically <3 s for proteins with 1000–3000 atoms
when 1 or 2 grids are placed per Å. Increasing the number of
grids/Å (or resolution) appears to drastically increase the time.
The effect is prominent when the number of atoms is more
than 1000. This is because with increased resolution, the num-
ber of neighbors identified by our approach is much larger than
that by the standard distance-based approach. In other words,
the percentage of False Positives increases (see Fig. S1 of the
Supporting Information).

Results and Discussion

The contents of this section review basic aspects of the Gauss-
ian model and in addition also points out other aspects that
have not been addressed meticulously in the literature before.
The idea is to emphasize on the numerical accuracy, physical
appeal and an inevitable limitation of the model.

Volume and SA computed using the Gaussian model

The Gaussian model, as proposed by Grant and Pickup in their
seminal work, delivers the vdwV and vdWSA of molecules.[49]

Using our implementation with the grid-based neighbor search
algorithm and the library of 74 proteins, we found that the vol-
umes delivered by it differ from the hard-sphere vdWV by
~7–8% (the latter was computed using the package ProteinVo-
lume[55]). We also used another package called 3V[64] for a thor-
ough benchmarking and found that the difference, in this case,
was smaller (difference < 1%). In terms of the SA, we found that
the output from the Gaussian model differs by ~6–6.5% from the
vdWSA computed using the hard-sphere model by FREESASA.[65]

Once again for a thorough benchmark, we also used NACCESS[66]

and the difference was found to be ~4.5%. The exact values of
these differences, expressed using RMSRD and the outcomes of
a linear regression fit to the model comparisons are presented in
Table 2. For all the Gaussian model-based calculations, a “κ”
value of 2.227 was used[37,39] (see eq. (2)) and a resolution of
2 grids/Å was used for grid-based neighbor search.

There are two major inferences we draw from these compari-
sons. First, our implementation of the Gaussian model precisely
delivers the molecular vdWV and vdWSA indicating that the
implementation correctly reproduces the expected behavior of
the Gaussian model. Second, volumes/SA computed using the

Figure 4. The average run time as a function of the number of atoms in the
solute and grid resolution (grids/Å). Seventy-four proteins were used for the
test and the average time was computed by averaging over 10 runs on
each protein. As the standard deviations of the runtimes were infinitesimally
small, error bars depicting them are deliberately not shown. [Color figure
can be viewed at wileyonlinelibrary.com]
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hard-sphere model do not offer a strict reference for benchmark
and validation. This is evident from comparing the results com-
puted by different software. Indeed, different packages imple-
menting the hard-sphere model yield different values (Table 2).

We further extended the comparison between the two
models at the level of SAs of individual atoms. Using the two
models, SA of individual atoms across the 74 proteins were
computed and compared. The result, also shown in Table 2,
clearly indicates that the Gaussian model can deliver precise
SAs of individual atoms with a difference of only 15.9% with
respect to the values computed using the hard-sphere model.
This good quality of the agreement is also evident from the
slope and intercept of the linear regression and a correlation of
0.953. This ability to deliver proper SAs of individual atoms pro-
vides the Gaussian model with an added advantage. Several
packages like AGBNP[37,39] and ACE,[67] that run MD using the
Gaussian model, make use of this ability to correctly compute
the energy and forces on individual atoms alongside the con-
tinuous and differentiable analytical expressions for this terms.
In addition to this, atom-specific surface-tension coefficients
used in conjunction with individual atomic SAs has been shown
to deliver nonpolar part of the free energy in good agreement
with that from explicit solvent simulations.[42]

Physical appeal

In addition to numerical precision, one of the key features of a
smooth Gaussian-based model is that the transition area
between solute and the solvent phases does not have to be
sharp. To demonstrate this, we present a profile of the change
in the vdWV/SA of a protein complex as a function of the dis-
tance between the monomers as they are separated in space. A
test of the same nature was performed by Grant and Pickup in
the process of parametrical optimization of the model.[49] For
our study, we separated chains A and D of the Barnase–Barstar
complex (PDB ID: 1X1X) in steps of 0.1 Å starting from the
bound state to 15 Å away. At 15 Å separation, the monomers
are practically free (completely unbound).

The profiles are shown in Figure 5. Clearly, the change in
vdwV/SA obtained using the Gaussian model (Figs. 5a and 5c)
has an overall smooth trend (if one momentarily overlooks the
periodic effects arising from use of the grid-based approach). In
the completely unbound state, the volume and SA of the dimer

is simply equal to the sum of these quantities for the individual
monomers. On the contrary, the profile obtained using the
hard-sphere model features some prominent bumps, disconti-
nuities, and noticeable regions of transitions. Between 1–2 Å of
separation, the hard-sphere model yields an increase in the
total volume of the complex and then it drops at around 2–3 Å
(Fig. 5b). Following this drop, it again increases monotonically
till the total volume saturates at a value that equals the sum of
the volumes of the monomers. In terms of the SA, there is a
drastic initial increase till the monomers are separated by
approximately 1 Å after which there is a small discontinuity
leading to a plateau in the profile (Fig. 5d). Once separated by
approximately 3 Å, the profile acquires a monotonically increas-
ing trend till it saturates to a value that equals the sum of the
SAs of individual monomers (occurs at ~8 Å separation).

Overall, the major difference in the profiles from the Gaussian
and the hard-sphere model occur at small separations. This can
be attributed to the method used by these approaches to treat
the intersection or overlap volumes. To elaborate, we plot the
number of contacts between the two monomers (chains A and
D) as a function of the distance of separation in Figure 5e. A
contact here is defined as a pair comprised of an atom from
Barnase and an atom from Barstar whose centers are separated
by no more than 4 Å. As the monomers move farther apart, the
number of contacts drops drastically at small separation dis-
tances and becomes zero at distances greater than 9 Å. The
region in between exhibits several abrupt transitions (2–9 Å).
The drastic and discontinuous drop in the region from 0–2 Å
explains the abrupt changes in the collective volumes of over-
lapping atoms at the interface. This is the cause for the bumps
in the profile obtained using the hard-sphere model at that
region. This is also the region that emphasizes on the ability of
the Gaussian model to deliver smoothly changing volumes. In
case of the Gaussian model, the volume of the overlapping
regions (regardless of the order) between the atoms at the
interface has a continuous expression (see eq. (7)) which even-
tually renders a smooth change of the two quantities.

Gaussian model to compute solvent excluded volumes

The solvent excluded volume (SEV) and the corresponding sur-
face area (SESA) are considered more faithful representations of
the geometry of the solute–solvent interface than the vdW
counterparts. These representations appropriately characterize
those voids present in the solute structure, which are too small
to fit a solvent molecule, as part of the solute phase. By virtue
of this definition, SEVs are larger than the vdW volumes
because the latter is a part of it. With our library of 74 proteins,
SEVs were found to be 25–50% larger than their vdW volumes
(average difference was ~38%).

In an attempt to enable the Gaussian model to deliver SEVs,
Gallicchio et al.[39] incorporated a modification in the Gaussian
model. The modification involves augmenting the radius of all
the solute atoms by an offset term Roffset so as to account for
the volume of crevices in the total volume. To enhance the
physical appeal of this modification, an additional correction/-
modification was later incorporated.[37] The central idea of the

Table 2. Comparison between van der Waals volumes and surface area
of proteins and surface area of individual atoms obtained using the
Gaussian model and the hard-sphere model. The comparison is
quantified by the slope, intercept of the linear regression fit, correlation
(R2) and the root mean square relative difference (RMSRD).

RMSRD
(%) Slope Intercept

Correlation
(R2)

van der Waals volume of proteins
ProteinVolume 7.70 1.08 7.40 Å3 0.999
3 V 0.24 1.00 7.20 Å3 0.999

van der Waals surface areas of proteins
FREESASA 5.9 0.94 32.09 Å2 0.999
NACCESS 4.3 0.95 64.51 Å2 0.999

van der Waals surface area of individual atoms
FREESASA 15.9 0.89 0.70 Å2 0.953
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modification was motivated by the fact that as Roffset increases
the atomic radii in order to account for the interstitial crevices
in the structure, it also causes the solvent-exposed atoms to
expand further into the solvent region. Therefore, the excess
volume of the solvent exposed atoms can be discarded by
computing the volume of only the solvent-exposed region of
the atoms and subtracting it from their volume obtained with

modified atomic radii (Voffset
i ). This is illustrated in Figure 6a and

eq. (16) expresses this correction term.

Vi = Voffset
i −V solvent−exposed region

i

Vi =
SAoffseti Ri + Roffsetð Þ

3
1−

Ri
Ri + Roffset

� �3
 !

ð16Þ

Figure 5. Profile of the change in the van der Waals (vdW) volume and surface of the Barsnase–Barstar complex computed using two different models as a
function of the distance of separation of the monomers. Profile of the change in vdW volume obtained (a) using the Gaussian model and (b) using the hard-
sphere model. Profile of the change in vdW surface area obtained (c) using the Gaussian model trend and (d) using the hard-sphere model. The solid blue
lines in (a) and (c) depict a nonlinear fit to the profiles obtained using the Gaussian model in order to emphasize the overall smoothness of the trend. The
vdW volume and surface area using the hard-sphere models were computed using 3 V[64] with a probe of radius 0.0 Å. (e) Change in the number of contacts,
that is, atom pairs from either monomer found to be within 4 Å distance, as a function of the distance of separation of the monomers. (f) A cartoon
representation of the setup in which the monomers of the Barnase–Barstar complex were separated for obtaining the above profiles of volume and surface
area changes. [Color figure can be viewed at wileyonlinelibrary.com]
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The expression in eq. (17) ensures that the correction is only

applied to the solvent exposed atoms with SAoffset
i 6¼ 0 com-

puted using augmented atomic radii.
We added this modification in our implementation of the

Gaussian model and evaluated a series of values of Roffset to
find the value that yields the best agreement with the SEV
computed using hard-sphere model with a solvent probe of
radius 1.4 Å. Roffset was systematically varied from 0.1–1.2 Å and
we found that 0.9 Å gives the best agreement with a RMSRD of
2.3% (Figs. 6b and 6c). The goodness of the agreement is also
confirmed by the quality of the linear regression which has a
slope of 0.95, y-intercept of 326.22, and correlation of 1.00. In
Supporting Information Table S1, we list the slope and intercept
of the linear regression, correlation, and the RMSRD for all the
Roffset values in this range.

Although this empirical approach delivers a good agreement,
the analysis so far as only emphasized on the numerical aspect.
It was, therefore, important to examine if this modification is

realistic in nature and if it retains the physical appeal of the
Gaussian model. Two different approaches were used to
address this. We examined (1) if this modification truly accounts
for the volume of the crevices in the structure and (2) if offers a
physically meaningful description of the SEV.

Volume of interstitial regions

A simple formula was used to derive the volume of the intersti-
tial regions of solutes. By subtracting out the volume obtained
with no Roffset (original model) from the volume obtained
with a nonzero Roffset, the interstitial volume or Vinterstitial
were obtained (eq. (17)).

Vinterstitial Roffsetð Þ=Volume Roffset 6¼0−Volume
�� ��

Roffset = 0 ð17Þ

By using the interstitial volumes obtained with the hard-
sphere model using ProteinVolume[55] as a reference, the

Figure 6. Optimization of Roffset input to the modified Roffset-based Gaussian model with respect to the SEV obtained using a hard sphere model. Distributions
and relative percent deviations (RMSRD) are computed for the protonated and minimized crystal structures of 74 proteins. a) Schematic showing the basis of
the modified Roffset-based Gaussian model in which the excess volume of a solvent exposed atom (shown in yellow), obtained by augmenting its van der
Waals radius by some Roffset, is subtracted out when the correction is applied. b) Distribution of volume output by the modified Roffset-based Gaussian model
(blue) computed with various Roffset values ranging from 0.0 through 1.2 Å, compared with the distribution of the hard-sphere solvent excluded volumes
(pink) for the same set of proteins. Each distribution is represented by a boxplot (see Appendix B). The dashed lines connecting the medians of the boxes
highlight the overall trend. (b) %RMSRD of the volume from the Gaussian model with respect to the SEV as a function of Roffset. [Color figure can be viewed
at wileyonlinelibrary.com]
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interstitial volumes computed using Roffset of 0.9 Å were found
to lie within 10.5%. In addition, a linear regression fit yielded a
slope of ~0.81 and a correlation of ~0.99. That the other values
of Roffset did not perform as good as 0.9 Å, as is evident from
Figure 7, confirms that the numerical match obtained with this
Roffset has a realistic foundation as well. In Supporting Informa-
tion Table S2, we list the slope and intercept of the linear
regression, correlation, and the RMSRD for all the Roffset values

that were used. The above calculations were done on the
library of 74 proteins.

Physical appeal of the Roffset-based Gaussian model

In terms of physical appeal, we used the same case of Barnase–
Barstar complex, separating the monomers from their bound
state to a completely unbound state, to profile the change in

Figure 7. Comparison of the volume of the interstitial regions in the structure (Volumeinterstitial) obtained using the modified Roffset-based Gaussian model (see
eq. (17)) and the hard-sphere model. Distributions and relative percent deviations (RMSRD) computed for the protonated and minimized crystal structures of
74 proteins. (b) Distribution of Volumeinterstitial computed using the modified Roffset-based Gaussian model (blue) computed with various Roffset values ranging
from 0.0 through 1.2 Å, compared with the distribution of Volumeinterstitial computed using the hard-sphere model by ProteinVolume[55] (pink). Each
distribution is represented by a boxplot (see Appendix B). The dashed lines connecting the medians of the boxes highlight the overall trend. (b) %RMSRD of
the Volumeinterstitial from the Gaussian model with respect to the Volumeinterstitial from hard-sphere model as a function of Roffset. [Color figure can be viewed
at wileyonlinelibrary.com]

Figure 8. a) Change in the volume of the Barsnase–Barstar complex output by the modified Roffset-based Gaussian model. The solid blue line depicts a
smooth fit to emphasize the smooth trend. Inset: Difference of the volume output by the modified Roffset-based and the unmodified Gaussian model, which is
supposed to depict the volume of solvent inaccessible crevices in the complex’s structure, as a function of separation distance. b) Change in the solvent
excluded volume (SEV) of the complex computed using 3 V[64] with a probe of radius 1.4 Å as a function of the separation distance of the monomers. Inset:
Volume of reentrant regions and solvent inaccessible crevices obtained by subtracting the van der Waals volume of the dimer from its SEV. The shaded
region (gray) emphasizes the length scale of separation that is comparable to the diameter of the solvent probe (2.8 Å). [Color figure can be viewed at
wileyonlinelibrary.com]
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volume. Except in this particular study, we replaced the vdW
volume with the SEV from hard-sphere model and the volume
from the modified Roffset-based Gaussian model. For the latter,
we used Roffset of 0.9 Å. The profiles are shown in Figure 8.
Clear differences are visible in the trends obtained from the
two models. That the profile of the volume from the modified
Roffset-based Gaussian model has a better physical foundation
than the hard-sphere model is justified in the following two
paragraphs.

The volume from the modified Roffset-based Gaussian model
features a smooth monotonic decrease from an initial value to
the value that equals the sum of the volumes of the individual
monomers (Fig. 8a). The inset in the plot shows the volume
derived from eq. (17) and shows that the excess volume com-
puted by the Roffset-based Gaussian model (after the correction
of the excess solvent exposed volume) monotonically and
smoothly decreases as the separation increases. This smooth
decrease can be better understood in terms of the change of
average dielectric properties of the region between the mono-
mers. As the monomers move apart, they gradually allow sol-
vent molecules to occupy this region. But as the solvent
molecules begin to enter the space between the interfaces, the
interfacial residues from either monomer are expected to favor-
ably interact with it to compensate for the loss of favorable
interactions in the bound state. Consequently, the solvent mol-
ecules are not as mobile as their counterparts in the bulk and,
therefore, tend to have a lower dielectric response, as has also
been observed experimentally.[68] This is the foundation
reflected in the Gaussian-based smooth dielectric model pro-
posed by us.[47]

For the case of hard-sphere model, on the other hand, the
volume increases from the initial value in the bound state till
the separation is approximately 2 Å. Subsequently, there is a
drastic drop in the volume in the region from 2–4 Å (shaded
region in Fig. 8b). The size of this region is typical of the sol-
vent probe’s diameter and drop occurs because the concave
reentrant surfaces, previously bounding the solvent inaccessi-
ble crevices at the interface between the monomers, disap-
pear at this degree of separation. The inset plot in Figure 8b
shows this loss of the solvent inaccessible volume bound by
the reentrant surfaces. This volume is simply derived by sub-
tracting the SEV of the dimer system from its vdW volume.
The sudden loss of reentrant volume at the interfacial region
implies that solvent molecules can enter this region and
retain the dielectric response seen in the bulk phase.
Although, this model of dielectric distribution is conventional
in PB modeling of solvated dimer systems, it fails to capture
the possibility of interaction of the newly exposed interfacial
residues with the solvent.

Limitations to the applicability of the Gaussian model with
large Roffset

There is a practical risk associated with using radius offsets
comparable in magnitude to the radius of atoms (e.g., Roffset
of 0.9 Å). The Gaussian model of Grant and Pickup was
designed and optimized to deliver vdW volume and SA but
only in the limit of weakly overlapping atoms.[69,70] Thus,
augmenting the atomic radius also increases the degree of
overlap of atoms and this brings the Gaussian model very

Figure 9. Comparison of the van der Waals volume from the Roffset-based Gaussian model (without correction of the excess solvent-exposed volume) and
hard-sphere models when augmented radii for atoms are used. Distributions and percent deviations (RMSRD) are computed for the protonated and
minimized crystal structures of 74 proteins. a) Distribution of volume output by the Roffset-based Gaussian model (blue) computed with various Roffset values
ranging from 0.0 through 1.2 Å, compared with the distribution of hard-sphere volumes (pink) computed using the same set of augmented radii. Each
distribution is represented by a boxplot (see Appendix B). The dashed lines connecting the medians of the boxes highlight the overall trend. b) %RMSRD of
the volume obtained using the Roffset-based Gaussian model with respect to the volume output by the hard-sphere model as a function of Roffset. [Color
figure can be viewed at wileyonlinelibrary.com]
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close or likely beyond its limit of applicability. With large
overlaps and by virtue of the Gaussian product theorem
(eq. (4)), the volume of the overlapping regions is overesti-
mated with respect to what a hard-sphere model would
deliver with the same set of augmented radii. Mathemati-
cally, as the overlapping region of any two atoms grows in
volume, the volume of the atom pair grows proportionally to
the product of the volumes of the individual atoms (V2,
where V is the volume of one atom). Geometrically, however,
if two atoms of similar volumes overlap significantly in space,
the volume of the atom pair is proportional to the volume of
the larger of the two atoms (or V). This fundamental problem
can lead to errors in volume and SA estimates.

To test the effect of offsets, we computed the vdW volume
using the Gaussian model and the hard-sphere model when
both the models were provided with augmented atomic radii.
This deliberately increased the degree of overlap of atoms due
to their increased radii. By systematically varying Roffset from
0.0–1.2 Å, their distribution was compared and the relative dif-
ferences were measured (Fig. 9). The overall trend indicates that
as the value of Roffset is increased, the Gaussian and hard-sphere
volumes start to deviate appreciably. Volumes obtained from
the Gaussian model increase exponentially while volumes
obtained using the hard-sphere model saturate after a certain
point. With no offset, the volumes from the two models deviate
only by ~7% (the difference in the vdW volumes) but this
increases to ~41% when the radii are augmented by an offset
of 1.0 Å and to ~55% when augmented by an offset of 1.2 Å.
This exponential deviation reflects the overestimation of the
overlap volumes that is geometrically incorrect.

This aspect of the Gaussian model will pose methodologi-
cal issues if it used to compute the SASA of solutes using
the definition used by the hard-sphere model. By that defini-
tion, SASA is essentially the vdWSA obtained when the
radius of each atom is augmented by the radius of the sol-
vent probe (typically 1.4 Å). But if an Roffset value of 1.4 Å is
used in order to obtain SASA using the Gaussian model, it
will be asked to operate beyond its range of applicability.
Although this idea was titillated by Grant and Pickup in their
original work,[49] Weiser et al.[69] emphasized on the issue
with the approach. Weiser et al.[69] also discussed other
parametrical modifications to obtain SASA but carefully
described their limitations too.

Conclusion

This work presents a novel grid-based algorithm of identi-
fying overlapping pairs of atoms in conjunction with the
analytical approach of a Gaussian-based model[49] for com-
puting MVs and MSAs. The primary motivation for this
design is to integrate into Delphi,[11] a popular PBE solver,
a new feature for determining nonpolar parts of the free
energy. This grid-based algorithm makes a simultaneous
use of a cubic 3D grid-map constructed for Delphi’s finite-
difference based operations and by doing so, it incurs
very little to no time in identifying the pairs of atoms that
overlap in space. The validation of the grid-based algorithm

in terms of the final volume/SA output, accuracy in identify-
ing overlapping atom pairs and time efficacy shows that the
method is robust and credible for an integrated use with
future versions of Delphi for MM/PBSA analyses. The integra-
tion of the Gaussian-based model of volume/SA with the
Gaussian-based model of dielectric distribution of Delphi[47]

also promotes a description of solvated biomolecular sys-
tems which removes sharp surfaces separating the solute
and the solvent phases and depicts a smoother transition
instead. This work brings us one step closer to having an
integrated platform for MM/PBSA calculations using a physi-
cally appealing, surface-free approach to evaluate the ther-
modynamics of solvation, binding and folding/unfolding of
proteins in the framework of implicit solvent models.
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Appendix A.

Root Mean Square Relative Difference (RMSRD)

The expression for the RMSRD between two sets of data, X
and Y, relative to one of them (say X) with the same
strength, N, is given by the following expression:

RMSRD= 100*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i =1

Xi −Yi
Xi

� �2
N

vuuut

Appendix B.

Interpreting Boxplots

Boxplots are a useful way of representing a distribution. By
depicting the different quantiles for the underlying data, they
provide a better sense of the distribution. Presenting the
mean and the variance of a data assumes that the data is nor-
mally distributed, which, however, is not always the case. Box-
plots do not assume the category of the distribution of the
data and can provide more information than just the mean
and the variance. The figure below provides a guide to inter-
preting boxplots.
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